OCR – Optical Character Recognition
ist ein Begriff aus der Informationstechnik und bezeichnet die automatisierte Texterkennung innerhalb von Bildern.
Texterkennung ist deshalb notwendig, weil optische Eingabegeräte (Scanner oder Digitalkameras, aber auch Faxempfänger) als Ergebnis ausschließlich Rastergrafiken liefern können, d. h. in Zeilen und Spalten angeordnete Punkte unterschiedlicher Färbung (Pixel). Texterkennung bezeichnet dabei die Aufgabe, die so dargestellten Buchstaben als solche zu erkennen, d. h. zu identifizieren und ihnen den Zahlenwert zuzuordnen, der ihnen nach üblicher Textcodierung zukommt (ASCII, Unicode). Automatische Texterkennung und OCR (Optical Character Recognition) werden im deutschen Sprachraum oft synonym verwendet. In technischer Hinsicht bezieht sich OCR jedoch nur auf den Teilbereich der Mustervergleiche von separierten Bildteilen als Kandidaten zur Erkennung von Einzelzeichen. Diesem OCR (Optical Character Recognition) Prozess geht eine globale Strukturerkennung voraus, in der zuerst Textblöcke von graphischen Elementen unterschieden, die Zeilenstrukturen erkannt und schließlich Einzelzeichen separiert werden. Bei der Entscheidung, welches Zeichen vorliegt, kann über weitere Algorithmen ein sprachlicher Kontext berücksichtigt werden.
OCR – Optical Character Recognition
Ursprünglich wurden zur automatischen Texterkennung eigens entworfene Schriftarten entwickelt, die zum Beispiel für das Bedrucken von Scheckformularen verwendet wurden. Diese Schriftarten waren so gestaltet, dass die einzelnen Zeichen von einem OCR-Lesegerät schnell und ohne großen Rechenaufwand unterschieden werden konnten. So zeichnet sich die Schriftart OCR-A (DIN 66008, ISO 1073-1) durch einander besonders unähnliche Zeichen, besonders bei den Ziffern, aus. OCR-B (ISO 1073-2) ähnelt mehr einer serifenlosen, nicht-proportionalen Schriftart, während OCR-H (DIN 66225) handgeschriebenen Ziffern und Großbuchstaben nachempfunden wurde.
Die gestiegene Leistungsfähigkeit moderner Computer und verbesserte Algorithmen erlauben inzwischen auch die Erkennung von „normalen“ Druckerschriftarten bis hin zu Handschriften (etwa bei der Briefverteilung); wenn jedoch Lesbarkeit durch Menschen nicht vorrangig ist, werden drucktechnisch und erkennungstechnisch einfacher handhabbare Strichcodes genutzt.
Moderne Texterkennung umfasst inzwischen mehr als reine OCR, das heißt die Übersetzung einzelner Schriftzeichen. Zusätzlich werden Methoden der Kontextanalyse, Intelligent Character Recognition (ICR), hinzugezogen, mit denen die eigentlichen OCR-Ergebnisse korrigiert werden können. So kann ein Zeichen, das eigentlich als „8“ erkannt wurde, zu einem „B“ korrigiert werden, wenn es innerhalb eines Wortes steht. Statt „8aum“ wird also „Baum“ erkannt. Im Bereich industrieller Texterkennungssysteme wird daher von OCR/ICR-Systemen gesprochen. Die Grenzen des OCR-Begriffes sind jedoch fließend, denn OCR und ICR dienen auch als Marketingbegriffe, um technische Weiterentwicklungen besser vermarkten zu können. Auch Intelligent Word Recognition (IWR) fällt unter diese Kategorie. Dieser Ansatz versucht das Problem bei der Erkennung von Fließhandschriften zu lösen, bei der die Einzelzeichen nicht eindeutig separiert und daher nicht über herkömmliche OCR-Methoden erkannt werden können.
Portfolio
Unternehmen
News

© summ-it Unternehmensberatung
B2B-Marketing mit summ-it:
Marketingstrategie, Go to Market, Content Marketing, Online Marketing, SEO, Google Ads, Inbound Marketing, Lead Generierung, WordPress, HubSpot, Nextcloud
Impressum | Datenschutz | Bildnachweis